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Abstract Snow depth is the easiest snowpack property to
measure in the field and is used to estimate the distribution
of snow for quantifying snow storage. Often the mean of
three snow depth measurements is used to represent snow
depth at a location. This location is used as a proxy for an
area, typically a digital elevation model (DEM) or
remotely sensed pixel. Here, 11, 17, or 21 snow depth
measurements were used to represent the mean snow depth
of a 30-m DEM pixel. Using the center snow depth
measurement for each sampling set was not adequate to
represent the pixel mean, and while the use of three snow
depth measurements improved the estimate of mean, there
is still large error for some pixels. These measurements
were then used to determine the variability of snow depth
across a pixel. Estimating variability from few points rather
than all in a measurement was not sufficient. The sampling
size was increased from one to the total per pixel (11, 17, or
21) to determine how many point samples were necessary
to approximate the mean snow depth per pixel within five
percent. Binary regression trees were constructed to
determine which terrain and canopy variables dictated
the spatial distribution of the snow depth, the standard
deviation of snow depth, and the sample size to within 5%
of the mean per pixel. One location was measured in two
years just prior to peak accumulation, and it is shown that
there was little to no inter-annual consistency in the mean
or standard deviation.

Keywords uncertainty, sampling, binary regression trees,
snow telemetry

1 Introduction

Snowmelt derived from mountain headwaters provides
water resources to over half of the world’s population
(Debarbieux and Price, 2012). Accordingly, the ability to
measure or estimate the snowpack in mountain landscapes
is critical to water resource management (Bales et al.,
2006). While the importance of information on mountain
snowpack is clear, obtaining these measures remains
challenging. This is in part because snow depth and
snow water equivalent (SWE) are both spatially and
temporally variable, and mountain regions are generally
difficult to access. As a step toward addressing this
challenge we evaluated methodologies to increase the
efficiency of snow surveys and to enhance remotely
derived estimates.
The correlation between snow depth and terrain/canopy

variables has been well established (Meiman, 1968; Elder
et al., 1991; Balk and Elder, 2000; Erxleben et al., 2002;
Erickson et al., 2005; Molotch and Bales, 2005; Hultstrand
et al., 2006; López-Moreno and Nogués Bravo, 2006;
López-Moreno et al., 2011; Sexstone and Fassnacht,
2014). Existing methods to estimate snow depths integrate
digital elevation models (DEMs) and land cover (LC) data
within a geographic information system (GIS) analysis
framework. With these approaches, only a few snow depth
measurements, often from one (Elder et al., 2009) to three
(Molotch and Bales, 2005) points, are used to represent the
area of one DEM or LC pixel (e.g., 30 m).
Clearly, this raises the question: how much variability in

snow depth exists within a pixel (López-Moreno et al.,
2011)? Various assumptions (Sturm and Wagner, 2010)
and analyses (Erickson et al., 2005; Deems et al., 2008;
López-Moreno et al., 2015) have demonstrated that snow
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accumulation and distribution patterns are consistent over
time for mean snow depth within a given pixel. Thus, a
second question follows: is the variability of snow depth
per pixel also consistent over time? To address these two
questions, we pose the following more specific questions
for our research objectives:
1) How different are the estimates of snow depth per

pixel using one or three points compared to using more
measurements per pixel? Specifically, do more measure-
ments per pixel provide more information?
2) How many measurements are needed per pixel to

estimate the mean value of a pixel within an acceptable
limit?
3) How do the pixel mean and pixel standard deviations

vary inter-annually for the same location at the same time
of the year?
4) How do meteorological driving forces, represented

by terrain and canopy variables, change in relative effect
on snow depth distribution between sites and inter-
annually at the same site?

2 Background on snow depth sampling

From a water resource management perspective, informa-
tion on water storage or SWE is preferred to estimates of
snow depth (Bales et al., 2006). However, snow depth (ds)
information is the easiest snowpack property to measure.
SWE is the product of ds and the depth averaged snowpack
density, and density has been shown to be less spatially
variable than SWE or depth (Logan, 1973; Fassnacht et al.,
2010; López-Moreno et al., 2013). Operationally, the
Natural Resource Conservation Service (NRCS) has
measured snowpack properties (ds and SWE) for more
than 80 years with the snow course sites, and over the past
40 years has used data from the automated snowpack
telemetry (SNOTEL) network to forecast spring and
summer runoff volumes (U.S. Department of Agriculture,
2011, 2016) across the Western United States where
snowmelt contributes water supply to more than 60 million
people. SNOTEL data have a daily temporal resolution that
represents the dynamic evolution of the snowpack
(Fassnacht et al., 2014), but only represent a small area
(~10 m2). Thus, individual measurements or stations tend
not to be representative of the area(s) surrounding them
(Molotch and Bales, 2005; Kashipazha, 2012; Meromy et
al., 2013), and such a single fixed point measurement is not
a statistically useful tool to represent the average snow
depth of an area, even with a relatively uniform snow pack
(Neumann et al., 2006). This issue arises for manual field
surveys used to evaluate the distribution of snow (e.g.,
Meiman, 1968; Mould, 1985; Elder et al., 1991; Balk and
Elder, 2000; Erxleben et al., 2002; Erickson et al., 2005;
Molotch and Bales, 2005; Hultstrand et al., 2006; López-
Moreno and Nogués Bravo, 2006; Sexstone and Fassnacht,
2014). Most of these surveys use one (Elder et al., 2009) or

three (Elder et al., 1991) snow depth measurements to
represent one pixel (e.g., 30 m) of a DEM.
Rice and Bales (2010) suggested that a network of

sensors could be used to provide a better estimate of snow
depth, especially for areas that cannot be readily or easily
surveyed manually. On average, 5 sensors out of a network
up to 44 yielded a snow depth estimate within 25% of the
basin mean, depending on the snow variability (Rice and
Bales, 2010). More sensors are likely needed to achieve
this level of accuracy in terrain with strong topographic
variability (Neumann et al., 2006). López-Moreno et al.
(2011) sampled 121 points at 15 relatively homogenous
100 m2 plots in the Spanish Pyrenees and found that five to
seven points produced an average snow depth within 5% of
the mean value based on the 121 points. In this paper we
used 11, 17, or 21 snow depth measurements per location
or pixel size of 900 m2 for over 150 pixels to evaluate snow
depth variability within a given location and to determine
the optimal number of points.

3 Data and methods

3.1 Study sites and sampling

Snow depth was measured manually about two SNOTEL
stations using evolving sampling strategies. The first
survey was about the Togwotee Pass SNOTEL station in
Northwestern Wyoming (Fig. 1(a)) on 17 March 2009
(TP09), while the second and third surveys were about the
Joe Wright SNOTEL station near Cameron Pass in
Northern Colorado (Fig. 1(a)) on 1 May 2009 (JW09)
and 2 May 2010 (JW10). The Togwotee Pass site has a
mixed canopy density throughout (Fig. 1(b)-i), while the
Joe Wright site is moderately to densely forested, except
along the road through the middle of the study area (Fig. 1
(b)-ii). Both sites are located in the Spruce-Fir forest
composed mainly of Picea engelmanii and Abies lasio-
carpa trees.
Snow depth measurements were taken to cover a

1 km�1 km area about the SNOTEL station in 9 or 10
transects each separated by 100 m (Meromy et al., 2013;
Fig. 1(b)). A 1 cm diameter aluminum probe (extendable in
1 m lengths) was used to measure snow depth to the nearest
one centimeter. Measurements were taken at 50 m intervals
along each transect. During snow sampling, a hand-held
Garmin or Trimble global positioning system (GPS) unit
was used to navigate to each sampling location. Each
person was instructed to navigate to within 10 m for each
coordinate, and record the GPS coordinates at the center
point to the nearest one-meter.
The simplest and most basic sampling design was three

snow depth measurements per pixel taken 5 m apart,
denoted – 5, 0, and+ 5 m (Meromy et al., 2013; Fig. 1(c)).
At the first site (TP09), two sets of four points were added
between each of the basic three measurements ( – 5, 0, and
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+ 5 m) plus an additional five points to the left and right of
center point yielding 21 points per pixel (Fig. 1(c)-i). The
10 additional points to the left and right added a substantial
amount of sampling time, and were only used for TP09.
Eleven points were used per pixel for the Joe Wright 2009
survey (Fig. 1(c)-ii). To increase the number of points per
pixel, while only slightly increasing the sampling time, one
point was added each to the left and right of the start ( – 5),
center (0) and end (+ 5) resulting in 17 points per pixel at
Joe Wright in 2010 (Fig. 1(c)-iii). These surveys produced
157, 203, and 206 pixels for TP09, JW09, and JW10,
respectively. Any measurements that were by the road or in
the anthropogenically produced snow bank beside the road
were noted and not used in the analysis.

3.2 Analysis and statistics

We examined the impact that the number of sampling
points per pixel had on computed mean and standard
deviations (Tables 1 and 2; Fig. 2). Firstly, we compared
the center snow depth measurement to the depths collected
along the 11 points in a row (Fig. 1(c)-ii) for all three
datasets, and then all points for TP09 (21 points, Fig. 1(c)-
i) and JW10 (17 points, Fig. 1(c)-iii). Secondly, we used
the basic three measurements in a row ( – 5, 0, + 5 m;
Meromy et al., 2013), and then the five measurements in a
plus from TP09 (Fig. 1(c)-i). For TP09 and JW10 we also
compared the 11 in a row versus all measurements. Lastly,
we computed the difference from the pixel mean snow
depth for all samples per pixel as a function of the number
of points per pixel (Fig. 3). These comparisons were
evaluated using the Nash Sutcliffe coefficient of efficiency
(NSCE) (Nash and Sutcliffe, 1970), the coefficient of
determination (R2), and the slope of the best-fit regression.
To evaluate repeatability of sampling (Erickson et al.,

2005; Sturm and Wagner, 2010), comparisons of the two
years of snow survey data for the Joe Wright site were
conducted by overlapping both datasets to ensure that each

corresponding data point from both years was within the
same 30-m pixel (Fig. 4). Any 2009 measurement location
that did not have measurements in 2010 but was within one
pixel of a 2010 measurement was also compared; this
increased the number of comparable points between the
two survey years (Fig. 4).
Various statistical techniques (e.g., Erxleben et al., 2002;

López-Moreno and Nogués Bravo, 2006) have been used
to determine which terrain and canopy variables explain
the spatial distribution of snow. A comparison of methods
for the same extent used here (~ 1 km2 shown in Fig. 1(b))
was applied across several Rocky Mountain sites in
Colorado for the NASA Cold Land Process Experiment,
and binary regression trees were determined to be the most
successful at explaining the variability of snow depth
(Erxleben et al., 2002). Accordingly, we created binary
regression trees (Fig. 5) following Elder et al. (1991) using
the Matlab data processing language. The trees were
developed to identify the sequence of terrain and canopy
variables that best distributed mean and standard devia-
tions of snow depths (Table 3), as well as to determine the
number of measurements needed to produce a value within
5% of the pixel mean (López-Moreno et al., 2011)
(hereinafter called measurements to 5%, Table 3). The
binary regression trees were built with a series of
branching decisions ending in a group of measurements
or “leaf”. A minimum leaf size equal to 5% of each site’s
measurements was used so that each terminal node
contained a reasonable number of measurements. Each
binary regression tree was analyzed across all possible
mergers of decision points and leaves to find the tree with
the lowest standard error. Standard error here is a function
of the relative standard deviation within each leaf. A tree
with one leaf for each measurement will have an error of
zero, and error generally increases as number of leaves
decrease. There are exceptions where reducing leaves and
decision points produces slightly more homogenous
terminal nodes (Meromy et al., 2013).

Fig. 1 (a) Location map for the i. Togwotee Pass and ii. Joe Wright SNOTEL stations in Wyoming and Colorado, respectively. (b)
Canopy density in percent for the area surveyed: i. Togwotee Pass was surveyed in 2009, and ii. Joe Wright was surveyed in 2009 (red
symbols) and iii. 2010 (black symbols). (c) The snow depth sampling design at each sampling plot is i) 21 points for Togwotee Pass
(2009), ii. 11 points for Joe Wright 2009, and iii. 17 points for Joe Wright 2010.

S.R. FASSNACHT et al. Distribution of snow depth variability 3



3.3 Geospatial data

Manual snow depth sampling was carried out at a
resolution of 50 m to 100 m while a 30-m DEM was

used for topographic data. The statistical analyses
identified the terrain and canopy variables that describe
the distribution and variability of snow depth about the two
SNOTEL stations. These terrain variables included eleva-

Fig. 2 Comparison of (a) mean and (b) standard deviation comparison between 3 point statistics (grey diamonds) and plot statistics for
three snow depth surveys about SNOTEL stations: i. Togwotee Pass in March 2009, ii. JoeWright in May 2009, and iii. JoeWright in May
2010. The center or 1 point snow depth is also compared to the pixel mean (open box). The maximum number of points per station-date are
in parentheses.

Table 1 Statistics mean summarizing the comparison of fewer sampling points (1, 3, or 5) to all sampling points (11, 17, or 21)

Comparison
Togwotee Pass 2009 Joe Wright 2009 Joe Wright 2010

NCSE R2 slope NCSE R2 slope NCSE R2 slope

1 to 11 0.61 0.73 1.02 0.62 0.78 1.14 0.44 0.62 0.96

1 to 17 N/A N/A 0.37 0.61 0.98

1 to 21 0.58 0.72 1.02 N/A N/A

3 to 11 0.90 0.90 0.93 0.93 0.94 0.94 0.89 0.89 0.96

3 to 17 N/A N/A 0.88 0.89 1.0

3 to 21 0.83 0.84 0.91 N/A N/A

5 to 21 0.90 0.91 0.92 N/A N/A

11 to 17 N/A N/A 0.98 0.94 0.98

11 to 21 0.94 0.94 0.98 N/A N/A
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tion (Dingman et al., 1988; Fassnacht et al., 2003), slope as
the sine of slope (Sexstone and Fassnacht, 2014), north-
ness (Fassnacht et al., 2012), eastness (Wallace and Gass,
2008), cumulative monthly clear sky solar radiation
(Dozier and Frew, 1990), and maximum upwind slope

Table 2 Statistics standard deviation summarizing the comparison of fewer sampling points (1, 3, or 5) to all sampling points (11, 17, or 21)

Comparison
Togwotee Pass 2009 Joe Wright 2009 Joe Wright 2010

NCSE R2 slope NCSE R2 slope NCSE R2 slope

3 to 11 0.22 0.55 0.96 0.19 0.58 1.05 ‒0.20 0.39 0.87

3 to 17 N/A N/A ‒0.30 0.40 0.92

3 to 21 0.03 0.34 0.65 N/A N/A

5 to 21 0.46 0.64 0.95 N/A N/A

11 to 17 N/A N/A 0.76 0.79 0.94

11 to 21 0.35 0.46 0.58 N/A N/A

Fig. 3 Mean absolute difference from the pixel mean snow depth
for all samples per pixel as a function of the number of points per
pixel for the three sampling dates. The number in the (a)
parentheses is the number of samples per pixel, while (b) is for
only the 11 points in a row (as per Fig. 1(c)-ii). The 5% difference
threshold is shown as the dotted line. Fig. 4 Joe Wright SNOTEL inter-annual (May 2009 and 2010)

comparison of (a) mean snow depth, and (b) standard deviation for
data at the 99 pixels within the same pixel (grey diamonds) and 70
sets of pixels that were within one pixel. A pixel is derived from
the 30-meter U.S. Geological Survey (2018) digital elevation
model< nationalmap.usgs.gov> . The Nash-Sutcliffe coefficient
of efficiency statistic is not included as it is less than zero in all
cases.
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(Winstral et al., 2002). Northness is the product of sine of
slope and cosine of aspect to represent an integration of
wind and sun influences with a steep north facing slope
approaching a value of 1 and a steep south facing slope
approaching a value of – 1. Eastness is the product of sine
of slope and sine of aspect to represent wind processes.
Maximum upwind slope describes the topographic shelter
or exposure relative to a specific wind direction (Winstral
and Marks, 2002), and can explain the variability in snow
deposition due to wind transport and redistribution
(Winstral et al., 2002).
Elevation data were obtained from the U.S. Geological

Survey (2018) 30-m DEM, and used to derive the terrain
variables. Canopy cover offers snow protection from the
wind, and provides shade on sunny aspects, and was thus
also used. Canopy cover data were also obtained from the
U.S. Geological Survey (2018). Data points were overlain
onto the DEM and the other variables in the ArcMap
Geographical Information System (GIS) software. The
value for the variables at each data point was then
extracted.

4 Results

When center points were compared to overall pixel means,
only Joe Wright 2010 was not considered good or very
good (Fig. 2(a)), as per the classification of Moriasi et al.
(2007). The mean of the three main measurement points
( – 5, center, + 5; Fig. 1(c)) is better than the center point
measurement alone for representing the overall pixel mean,
as shown by the improved NSCE and R2 values (Tables 1

and 2, Fig. 2). For Togwotee Pass 2009 and Joe Wright
2010, measuring 11 points was nearly the same as
measuring all 21 (TP09) or 17 (JW10) points, in terms of
estimating the pixel mean (Table 1; Fig. 2(a)). The five
extreme points arranged in a plus at Togwotee Pass did
produce a more accurate mean than three points in a row
(Fig. 1(c)-i versus Fig. 1(c)-ii).
The standard deviation computed from just three

measurements is not adequate to represent the variation
across a pixel from all measured points (Table 2; Fig. 2(b)).
The five extreme points at Togwotee Pass (Fig. 1(c)-i) is
better than the 11 points in a row at representing the
variability within each pixel (Table 2). At Joe Wright 2010,
the standard deviation from 11 points in a row is similar to
the pixel standard deviation computed with the extra left
and right points at – 5, 0, and + 5, i.e., 17 points in total
(Fig. 1(c)-iii).
The average number of points per pixel required to

represent the mean of the pixel depends on the acceptable
error (Fig. 3), and we used the 5% threshold suggested by
López-Moreno et al. (2011). Only 20 (TP) to 30% (JW) of
the actual points measured, i.e., 3 to 5 points, are required
to obtain the mean within 5% (Fig. 3(a)). Since there are
more measurements per pixel at TP than JW (Fig. 1(c)), the
deviation from the mean is smaller even with a lower
proportion of the total points (Fig. 3). When using only the
11 points in a row configuration (Fig. 1(c)-ii), the relation
between difference from mean and the number of points
are almost identical (Fig. 3(b)). However, there is
considerable variability among individual pixels
(Tables 1 and 2; Fig. 2).
There is inter-annual consistency in the average number

Fig. 5 Togwotee Pass 2009 binary regression trees for depth to 5% of the mean per pixel. Boxes represent decision nodes with the true
being the node to the left below. The value below the variable represents the mean value of all pixels remaining. Circles represent terminal
nodes with the mean of the number of points to within 5% of snow depth, for the number of points (n) in that category.
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of points necessary to estimate the pixel mean (Fig. 4(a)),
but much less consistency among the mean of individual
pixels within the same year (Fig. 4(a)). This decreases
further from the fit of R2 = 0.26 to when nearby
measurements (within one pixel) are added (R2 = 0.11).
The snow depth was almost the same for the early May
sampling at Joe Wright; the measurement means were 156
and 151 cm, and the SNOTEL measured depths were 177
and 180 cm for 2009 and 2010, respectively. At the
SNOTEL station, melt started after the sampling (6 May
2009 and 16 May 2010). There is almost no correlation of
pixel standard deviation between years (Fig. 3(b)).
The relative influence of terrain and canopy variables

was somewhat more consistent. Eastness appears as an
explanatory variable in all nine binary regression trees
(BRTs), with canopy density and elevation appearing in
eight of the nine BRTs (Table 3). Canopy density appears
early in the binary regression trees for mean snow depth
and standard deviation (Table 3(b) and 3(c)). Elevation
appears at the top of the binary regression trees for
measurements to 5% at all three sites (Table 3(a)), and in
the second (JW09 and JW10) or third (TP09) branch for
mean, but later (or not at all JW09) for standard deviation.
Sine of slope appears in the first or second branch and then
again in the third branch for the standard deviation. There
is more consistency between the order of appearance of
terrain and canopy variables for the two years at JW than
for the same year at TP and JW (Table 3).

5 Discussion

Previous surveys have used only three measurement points
in the sub alpine (e.g., Molotch and Bales, 2005; Meromy

et al. (2013) around SNOTEL stations) or up to five
measurement points in the alpine (e.g., Elder et al. (1991)
at Emerald Lake, Sierra Nevada CA or Hultstrand et al.
(2006) at GLEES, Snowy Range WY) to evaluate
snowpack depth and variability per sample location. The
NASA Cold Land Process (CLPX) used only one snow
depth measurement, but with a random stratified sampling
design which yielded 550 snow depth measurements over
a 1 km2 area (Erxleben et al., 2002). In a study in the
Pyrenees, five to seven samples were adequate to represent
one location at a 5% threshold (López-Moreno et al.,
2011). However, the sites used by López-Moreno et al.
(2011) were chosen as they appeared to have homogenous
snow distribution on the surface, and only 15 plots of 121
points each were surveyed twice. A reliable sampling
strategy is five measurement points taken at 5-m intervals
(Fig. 1(c)-i), but this is more difficult in forested areas and
complex terrain.
The 2009 and 2010 Joe Wright SNOTEL snow surveys

used a sampling strategy of 11 and 17 points, respectively.
In these two surveys only 99 sampling locations were
within the same pixel and 70 were in an adjacent pixel
(Fig. 4) due to the complexity of the terrain, the dense
canopy, and safety/logistics of sampling. It should be noted
that in this dense forest, the GPS accuracy was
occasionally reported to be as poor as 10 m, implying
that a specific pixel measurement may actually be within a
different pixel. The 10-m transect (Fig. 1(c)) is not
necessarily all within one 30-m pixel, and could even be
sampled across three pixels (Fig. 1(c)-i). Snow surveyors
were told to target each sampling pixel within 10 m of a
specified center point, which could lead to up to maximum
potential error of 40 m for points between the 2009 and
2010 survey. Furthermore, since snow depth, terrain, and

Table 3 Summary of the order of appearance in the binary regression tree for the (a) points to within 5% of the pixel mean from top 1 to last node (e.
g., Fig. 2), (b) mean, and (c) standard deviation, and. The same number in the order list identifies that variable occurring more than once in the
particular level. The fit statistic is the relative standard errors using a minimum leaf size of 5% of total number of samples

Variable (a) Measurements to five 5% of mean per pixel (b) Mean snow depth per pixel (c) Standard deviation per pixel

Togwotee Pass
2009

Joe Wright
2009

Joe Wright
2010

Togwotee Pass
2009

Joe Wright
2009

Joe Wright
2010

Togwotee Pass
2009

Joe Wright
2009

Joe Wright
2010

Canopy density N/A 2,4 4 3 1 3,5 1 2,5 1

Latitude N/A 2,3 4,5 N/A 6 N/A N/A 4,5,5 4,5,5

Longitude 4,4 N/A 6,7 4 N/A 1,3,4,5 4,4 N/A 5

Elevation 1,4,5 1,5,6 1,2,8 3,5,9 2,3,6 2,4,6 3,4 N/A 4

Sine of slope 3,3 N/A 5 5,6,7,9,10 3 N/A 2,3,5 1,3 2,3.4

Max upwind
slope

2,3 4 7,8 8 N/A N/A 3,6 6 3,5

Eastness 3 3,7,8 3 1 4,5,6 5,5 2,5 5,7 3

Northness 4 3,4 N/A 4 N/A N/A N/A 3,8 2

Solar radiation 2 N/A N/A 2 N/A 4 4 4 N/A

Relative standard
error

0.0321 0.0121 0.0229 0.0354 0.0283 0.0184 0.0708 0.0409 0.0182
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canopy all vary at scales finer than the 30-m resolution data
used here (Fassnacht and Deems, 2006), measuring more
than three points per pixel (e.g., 11 to 21; Fig. 1(c)) could
reduce sampling error.
Much of the snow hydrology literature suggests that

there is a temporal consistency in the spatial patterns of the
distribution of snow (e.g., Erickson et al., 2005; Sturm and
Wagner, 2010; Webb, 2017). In open areas or areas with
low density canopy, the snow distribution should be
consistent through each snow year, as the areas are affected
by the same physical features each season, while in more
closed canopy areas, the snow distribution may vary
through seasons due to changes in vegetative structure and
density, especially over time (Rice and Bales, 2010). The
patterns can be less consistent intra-annually than inter-
annually over small domains (Kashipazha, 2012); this
justifies further investigations into the patterns at the
seasonal scale (Webb, 2017). For the Joe Wright data, the
difference between 2009 to 2010 (Figs. 4(a) and 4(b))
could not be explained by land cover type, as 93% of the
pixels were classified as evergreen, nor by canopy density,
as most of the pixels had a dense canopy (91% had a
canopy density greater than 50%, 70% of the pixels has a
canopy density greater than 75%).
Binary regression trees (e.g., Fig. 5) illustrate the

systematic relation of snow properties per pixel to terrain
and canopy variables (Table 3; Elder et al., 1991; Erxleben
et al., 2002; López-Moreno and Nogués Bravo, 2006).
Elevation influences the distribution of snow (Fassnacht et
al., 2003), but more so at Joe Wright (Table 3) as the
elevation range was 50% greater (3055 to 3295 m at Joe
Wright versus 2840 to 3000 m at Togwotee Pass). Slope
also affected the distribution of snow, appearing often in
the mean regression tree at Joe Wright. Sine of slope and
maximum upwind slope were only related when the local
slope faces into the direction of the wind from the west at
TP and south at JW (Meromy et al., 2013).
Canopy density was an important factor due to its effects

on wind and solar radiation (Winstral et al., 2002; Veatch et
al., 2009), and it appeared in the binary regression trees for
all snow surveys for both mean snow depth (Table 3(b);
Fassnacht et al., 2017) and standard deviation (Table 3(c))
per pixel, but fewer for measurements to 5% (Table 3(a)).
Both study sites are forested with an average of 63% and
74% at Togwotee Pass and Joe Wright, respectively (Fig. 1
(b)). Similarly, modeled clear sky cumulative solar
radiation (plus eastness and northness) appeared in the
regression trees and had some correlation to standard
deviation at Joe Wright. Since all the measurements were
taken prior to the start of melt, canopy would further be
relevant for the distribution of snow during ablation
(Molotch et al., 2009).
How much snow varies within a pixel (Table 3(c); Fig. 2

(b)) is not directly a function of the same terrain/canopy
variables that drive the distribution of snow across the
landscape (Table 3(b)), nor how many measurements are

required to reach 5% (Table 3(a); Fig. 5). This difference is
related to in part to scale (Blöschl, 1999); snow depth and
vegetation are correlated at shorter scales (Deems et al.,
2006) when trees are present (Trujillo et al., 2007). At
longer distances, snow depth is more related to elevation
(Fassnacht et al., 2003, 2009; Deems et al., 2006).
Since each of the Joe Wright surveys composes the same

area and uses 99 of the same sample points, it is expected
that the key variables influencing the average snow depths
for each survey should be the same or similar. Variables
such as canopy cover, slope, and aspect are expected to be
constant between years, and other factors, such as the
driving local meteorology (given by solar radiation and
maximum upwind slope), are consistent from year to year
(Meromy et al., 2013). Here, we showed limited inter-
annual consistency in mean snow depth (Fig. 4(a)). There
is no previous research examining the distribution of
variability; no consistency was found in the variability of
snow depth for a specific pixel between years (Fig. 4(b)).
However, the correlation to the terrain and canopy
variables is consistent (Table 3). More data should be
collected to draw more solid conclusions between
variability in snow depth at the same location over
different years (e.g., Erickson et al., 2005).
With 11 to 21 samples per pixel over more than 150

pixels (Fig. 1(b)), our measurements have higher accuracy
than the single SNOTEL measurement (Kashipazha, 2012;
Meromy et al., 2013). The 11 measurement points in a row
(Joe Wright 2009; Fassnacht et al., 2017) was the easiest to
perform in the field, while 21 measurement points in a plus
(Togwotee Pass) was the most difficult, especially in dense
canopy and steep areas. The 17 measurement point per
pixel survey from Joe Wright in 2010 seemed to be the
most reasonable compromise to ensure representative
samples (Kashipazha, 2012), and efficiency in time and
energy spent to sample. On average, sampling three of 11
points in a row yields a mean snow depth within 5%
(López-Moreno et al., 2011) of the pixel mean (Fig. 3(b)).
The additional measurements for TP09 (21 points) and
JW10 (17 points) improve estimation of snow depth in a
pixel because these additional 6 to 10 points are off the row
of 11 samples. However, for TP09, the 5 meters
measurements taken off the main sampling line were
difficult due to the dense canopy (Fig. 1(b)) and slope of
the terrain at some of the pixels. The 17 point sampling
strategy (Fig. 1(c)-iii) was more efficient. To determine the
variability across a pixel using the standard deviation, the
five extreme points in the 21 point sampling strategy (Fig.
1(c)-i) were best strategy (Tables 1 and 2). The different
needs depend on the final purpose of the research and must
be considered when designing a sampling strategy;
sampling to estimate the mean would be used for an
overall estimation of the snow resource while sampling to
estimate the standard deviation would be used to assess
sub-grid variability.
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6 Conclusions

Snow depth sampling strategies, the distribution of snow,
and its sub-pixel variability were investigated at two sites.
Using one snow depth measurement is not adequate to
estimate snow depth within a sampling pixel, when
compared to 11, 17, or 21 measurements. While increasing
the sampling to three points is an improvement when
compared to using 11 measurement, but more measure-
ments provide a better estimate of the mean snow depth
across a sampling pixel. Using an acceptable error of
sampling within 5% of the overall mean, measuring
between 3 and 6 points was optimal. The results were
similar for each snow survey. Adding sampling off of the
main transect improved the estimation of pixel mean snow
depth. However, sampling five meters to the left and right
of the main transect increased the sampling time, so
sampling one meter on each side at three locations in each
sampling transect was a good compromise between
sampling time and quantity of data collected.
On a pixel by pixel basis, the mean snow depth was not

consistent for two similar sampling years; there was no
correlation between years for the standard deviation of
snow depth within the same pixels. The same key variables
appeared more often in the binary regression trees across
years and sites, but the hierarchy was inconsistent. The
most relevant variables were elevation, canopy density,
and eastness (the product of sine of slope and sine of
aspect).
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