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Abstract Over the past few decades, nitrate-nitrogen (NO3-N) concentrations have increased within
streams of the central Rockies, a pattern linked to regional N deposition trends. As NO3-N concentrations
increase, in-stream biological demand may become saturated and stream N export may increase. In
mountain landscapes, streams generally flow through steep, narrow valleys with limited riparian area and
strong stream-hillslope connectivity. Interspersed between the narrow valleys are wide segments where
substantial floodplain riparian areas can develop. Here, we coupled measures of stream reach NO3-N flux
balances with nutrient enrichment experiments along two stream reaches of contrasting valley morphology
in Rocky Mountain National Park. The stream reaches were (1) a narrow valley segment with limited
floodplain riparian area and (2) a longitudinally adjacent (directly downstream) wide valley segment with
extensive floodplain riparian area. We found that in-stream biological uptake of added NO3-N was limited in
both segments, presumably as a consequence of saturating conditions. Assessment of mass flux indicated
that the narrow valley segment was a consistent source of water and NO3-N across flow states, while the
wide segment was a sink at high flow and a source at low flow. Due to low in-stream biological retention,
gross gains and losses of water and NO3-N to and from the stream exerted primary constraint on segment
mass balances. Our results suggest that the exchange of water and nutrients between the stream and
adjacent landscape can exert strong control on reach-scale nutrient export, particularly in streams
experiencing or approaching N saturation.

1. Introduction

Mountain environments provide numerous ecosystem services important to humans, and over half the
world’s population is dependent on water resources from mountain headwaters (Barnett et al., 2005;
Debarbieux & Price, 2012). Streams draining the mountains of Colorado supply water resources to at least
5 million people in Colorado and comprise substantial proportions of the headwaters of the Colorado,
Platte, and Arkansas River basins. Although mountain environments provide a variety of beneficial services
to human populations, they also tend to be sensitive to environmental perturbation (Beniston, 2003).

Historically, mountain headwater systems of Colorado have received chronically low deposition of bioavail-
able nitrogen (e.g., nitrate-nitrogen, NO3-N; ammonium-nitrogen, NH4-N), but a pattern of increasing N
deposition on the eastern flank of the Colorado Front Range has been observed since the 1970s (Lewis &
Grant, 1980). High-elevation mountain ecosystems, such as those of Rocky Mountain National Park (RMNP),
are particularly sensitive to increased N deposition (Baron et al., 2000). The consequences of increased N
deposition in RMNP have included changes to terrestrial (Bowman et al., 1993, 2006) and aquatic biota
(Wolfe et al., 2003) and increased N concentrations in soils (Bowman et al., 2012), streams (Campbell et al.,
1995), and lakes (Baron, 1983; Williams et al., 1996). The observation of increased N concentrations in lakes
and streams during the growing season suggests that current N deposition exceeds terrestrial N demand
and excess nutrients leak to aquatic ecosystems (Baron et al., 2000; Mast et al., 2014; Williams et al., 1996).
This situation, where N supply exceeds N demand, is known as N saturation and has consequences for eco-
system function (Vitousek et al., 1997) and downstream N export (Aber et al., 1998; Dodds et al., 2002; Earl
et al., 2006; O’Brien et al., 2007).

Watershed or stream reach NO3-N export represents the balance between NO3-N inputs and retention.
Hydrologic connectivity between hillslopes and adjacent streams regulates the delivery of water and
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nutrients to the stream network (Jencso et al., 2009; Stieglitz et al., 2003) and sets the initial template of
channel network nutrient concentrations. For instance, stream reaches that are strongly connected to their
adjacent hillslopes will likely receive greater hillslope loading, while reaches that are less strongly
connected to the uplands, due to riparian buffering (Jencso et al., 2010; Pacific et al., 2010), will receive less
lateral loading. Subsequent to delivery to the stream network, numerous processes including hyporheic
exchange (Battin, 1999; Mulholland, 1997; Zarnetske et al., 2011), stream-floodplain interactions (Junk
et al., 1989; Meyer et al., 1997; Tockner et al., 1999), and in-channel biogeochemical processing (Kothawala
et al., 2015), control the downstream transport of nutrients.

Streams of RMNP, and in mountain watersheds in general, tend to flow through steep narrow valley seg-
ments that are occasionally interrupted by wide, flat valley segments (Wohl & Beckman, 2014). The steep
and narrow segments tend to have very limited riparian area, while expansive floodplain riparian areas can
develop in the wide segments. Riparian areas in wide valley segments can influence downstream nutrient
export through stream-riparian interactions that facilitate nutrient uptake and processing (Battin et al.,
2008; Hill, 1996). Additionally, valley width can influence stream-hillslope connectivity because broad riparian

Figure 1. (top middle) Site location in north-central Colorado. (left) Outline of Rocky Mountain National Park (RMNP) and
outline of Wild Basin in the southeast corner of RMNP. The continental divide longitudinally transverses RMNP and Wild
Basin is situated on the eastern flank of the continental divide. The box at the outflow of Wild Basin indicates our study
reaches, which are shown in more detail to the right. (right) Expanded view of stream reaches in Wild Basin. The stream
reaches consist of a narrow and a wide valley segment. The wide valley segment is directly downstream from the narrow
segment. We present data from stream monitoring sites S1, S2, and S3. S1 and S2 bracket the narrow segment and S2 and
S3 bracket the wide segment.

Table 1
Physical Characteristics for the Narrow and Wide Valley Segments of Upper North Saint Vrain Creek in Wild Basin, Rocky
Mountain National Park

Narrow valley segment Wide valley segment

Catchment area at segment outlet (km2) 82 84
Average elevation (m) 2560 2540
Average floodplain width (m) 97 254
Average channel width (m) 9.4 8.0
Riparian buffer ratioa 0.06 0.28
Valley length (m) 390 1540
Channel confinement Confinedb/unconfinedc Unconfinedb/unconfinedc

Channel gradient (%) 2.5 0.7
Channel sinuosity 1.1 1.4
Channel morphology Pool-riffle Pool-riffle

aRiparian area divided by hillslope area. Riparian and hillslope areas were calculated as the downstream minus the
upstream contributing areas for each segment. bConfinement as defined by Brierley and Fryirs (2005), in which a chan-
nel is confined if >90% of the channel length contacts a confining feature (i.e., terrace) and unconfined if <10% of the
channel length contacts a confining feature. cConfinement as defined by the ratio of channel width to floodplain
width, in which a channel is confined if the floodplain width is less than twice the channel width, and unconfined if
the floodplain width is over 8 times the channel width.
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areas of wide valley segments can interrupt stream-hillslope connec-
tions, thus buffering hillslope nutrient delivery to the stream
(McGlynn & Seibert, 2003). As such, floodplain riparian areas have the
potential to buffer downstream export through lateral stream-riparian
interaction and diminished hillslope nutrient delivery to the stream.
For these reasons, wide valley segments may be important locations
of nutrient retention in mountain environments. Given the increased
N deposition in portions of the Colorado Rockies, including RMNP
(Bowman et al., 2012), understanding nutrient retention in these
landscapes is required for mitigating potential ecological and water
quality impacts.

Experiments that quantify stream nutrient retention typically involve
injecting nutrients into the stream and quantifying the loss of that
nutrient at a downstream sampling point (Stream Solute Workshop,
1990). Injection studies reflect in-stream (Triska et al., 1989) and hypor-
heic (Mulholland et al., 1997) nutrient uptake and provide information
on the ability of the stream to retain nutrient inputs (Peterson et al.,
2001). In addition to nutrient injection experiments, nutrient mass bal-
ances can be used to evaluate watershed (Bormann & Likens, 1967;
Hetherington, 1984) or stream reach (Roberts & Mulholland, 2007)
nutrient export and incorporate stream connections to hillslopes,
riparian areas, and the watershed. We used nutrient injection experi-
ments and stream-valley segment flux balances to evaluate in-stream
and valley controls on nutrient retention along two morphologically
contrasting, but longitudinally adjacent, segments of North Saint
Vrain (NSV) Creek, RMNP.

2. Study Site

This research occurred during May–October 2015 along Upper NSV
Creek, which drains the 88 km2 Wild Basin Watershed (40°130N,
105°320W; Figure 1). Wild Basin is located above a Pleistocene glacial

moraine in the southeast corner of RMNP, Colorado, and overlies predominantly Precambrian biotite schist
and granite bedrock (Braddock & Cole, 1990). Upland vegetation consists of Engelmann spruce (Picea
engelmannii), subalpine fir (Abies lasiocarpa), and lodgepole pine (Pinus contorta), and valley bottom vegeta-
tion includes quaking aspen (Populus tremuloides), dense stands of willow (Salix spp.), and other riparian
shrubs. In 2015, mean annual temperature was 6 °C, with a summer average of 15 °C and a winter average
of 1 °C. Total precipitation in 2015 was 813 mm with 64% (519 mm) in the form of snowfall (snow telemetry,
#412). A persistent snowpack is typical in higher elevations of the watershed and extended from October 29
to June 5 in 2015 (Wild Basin snow telemetry, #1042, 2914 m). Melting of the snowpack drives the NSV hydro-
graph, which typically rises to peak flows in June and recedes to baseflow by late summer or early autumn.
The portions of NSV we studied were (1) a pool-riffle sequence that flows through a moderately sloped, nar-
row valley directly followed by (2) a low-gradient, wide valley bottom with extensive floodplain riparian areas
(Figure 1 and Table 1). The two segments are longitudinally adjacent but vary substantially with respect to
valley width, channel slope, floodplain riparian area, and channel planform complexity (Table 1).

3. Methods
3.1. Stream Physical and Chemical Characteristics

We placed three stream monitoring stations, “S1,” “S2,” and “S3” at the inflows and outflows of the
narrow and wide segments, so that S1 and S2 bracket the narrow segment and S2 and S3 bracket the wide
segment (Figure 1). At each monitoring station, we measured stream stage and water temperature at 15-min
intervals from May to October 2015 using capacitance rods (TruTrack Inc., Christchurch, New Zealand) with
±1-mm precision.

Figure 2. (top) Precipitation (P) and snow water equivalent (SWE) with (a) daily
mean discharge and (b) ambient nitrate-nitrogen (NO3-N) concentrations at
S1, S2, and S3 fromMay to October 2015. S1 and S2 bracket the narrow segment,
and S2 and S3 bracket the wide valley segment. The vertical lines in Figure 2a
indicate timing of high (8–9 June) and low flow (5–6 August) injection
experiments.
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Once a week, we used velocity area (Dingman, 2002) or dilution gau-
ging (Kilpatrick & Cobb, 1985) approaches to measure discharge at
S1, S2, and S3 across flow states. During dilution gauging, we injected
dissolved sodium chloride (NaCl) 50 to 75-m upstream of the measure-
ment site (i.e., a mixing length). At the measurement site, we recorded
specific conductivity (SC) at 2-s intervals prior to the injection of NaCl to
determine background concentrations, through the arrival of NaCl, and
after the stream returned to background conditions. We used an
empirical calibration to convert SC to NaCl concentrations and deter-
mined discharge (Q) from equation (1):

Q ¼ NaClMA

∫t0NaClC τð Þdτ (1)

where NaClMA is the mass of NaCl added to the stream and NaClC is the
background corrected NaCl concentration through the breakthrough
curve. Using weekly discharge data, we developed rating curves
between stage and discharge to transform continuous (i.e., 15-min)
stage data to a continuous discharge time series.

At S1, S2, and S3, we collected grab samples (n = 12 at S1 and S3, n = 15
at S2) at weekly to monthly intervals from mid-May to October. We
field-filtered each sample through 0.7-μm glass fiber filters (GF/F
Whatman International, Ltd., Maidstone, UK) into acid-washed and
stream-rinsed 125 mL high-density polyethylene bottles, placed into
a dark cooler, and kept frozen until analysis. Nitrate concentrations
were analyzed at the Rocky Mountain Research Station in Fort Collins
(Pierson et al., 2016) using a Dionex ICS-3000 ion chromatograph with
±5-μg/L precision for concentrations below 100-μg/L and ±5% preci-
sion for values above 100 μg/L, and a method detection limit of 10-μ
g/L NO3-N.

3.2. Segment Water and NO3-N Flux Balances

We determined water and ambient NO3-N flux balances for each seg-
ment. Water flux balances were determined as outflow minus inflow

discharge. For instance, the narrow valley segment water balance was calculated as flow at S2 minus flow
at S1. For NO3-N, we calculated flux as the product of grab sample NO3-N concentrations and sampling loca-
tion discharge. Net segment NO3-N flux balances were determined as the difference between flux measured
at segment outflow minus inflow. We calculated segment NO3-N flux balances for nine dates where inflow
and outflow were sampled simultaneously. Positive values indicate that the segment was a net source of
water or NO3-N, while negative values indicate that the segment was a net sink. Flux balances for each seg-
ment were divided by segment valley length, or the length of a straight line running in the down-valley direc-
tion (Table 1), to account for differences in valley length.

3.3. Stream Nutrient Injection Experiments

We performed stream nutrient injection experiments during high flows (5 m3/s) from 8 to 9 June and low
flows (1 m3/s) from 5 to 6 August along the narrow and wide valley segments of NSV. For each experiment,
we instantaneously coinjected NaCl and Potassium nitrate (KNO3) at the segment inflow (S1 for the narrow
segment and S2 for the wide segment; Figure 1) and quantified Cl and NO3-N concentrations at the segment
outflow (S2 for the narrow segment and S3 for the wide segment; Figure 1). At the downstream sampling
locations (segment outflows) we recorded real-time (2-s) conductivity breakthrough curves using Campbell
547A conductivity and temperature probes attached to Campbell CR1000 data loggers (Campbell Scientific
Inc., Logan, UT). Using real-time conductivity data to guide sample collection, we collected streamwater grab
samples across the conductivity breakthrough curves, filtered the samples in the field through 0.7-μm glass
fiber filters (GF/F Whatman International, Ltd., Maidstone, UK) into acid-washed and stream-rinsed 125-mL
high-density polyethylene bottles, and froze the samples until analysis. Samples were analyzed for chloride

Figure 3. (top) Precipitation (P) and snow water equivalent (SWE) with (a) daily
mean discharge (Q) at S2 and ambient nitrate-nitrogen (NO3-N) fluxes at S1,
S2, and S3, and (b) daily mean discharge (Q) at S2 and ambient NO3-N flux
balances for the narrow and wide valley segments. The vertical lines in Figure 3a
indicate the timing of high flow (8–9 June) and low flow (5–6 August) injection
experiments. Segment balances in Figure 3b are given per 100 m of valley
length to account for differences in total length between the segments.
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(Cl�) and nitrate (NO3
�) using a Dionex ICS-3000 ion chromatograph at

Rocky Mountain Research Station, Fort Collins, Colorado. We quantified
tracer mass recoveries for both Cl and NO3-N for the injections as

TMR ¼ Q∫t0Tc τð Þdτ (2)

where TMR is the tracer mass (g) recovery, and Tc is the time-integrated
background corrected tracer concentrations (g*s/L) for either Cl or
NO3-N. We used injected tracer mass recoveries at each sampling site
to calculate total retention (TR), as shown in equation (3):

TR ¼ mass of tracer injected–TMR (3)

Total retention of NO3-N (TRN) represents the amount of injected NO3-
N that did not arrive at the downstream sampling location due to
hydrologic loss (physical retention) and in-channel/hyporheic biologi-
cal uptake (biological retention). To calculate the physical retention of
NO3-N (PRN), we multiplied the fraction of Cl retained during the tracer
injection by the mass of injected NO3-N, as shown in equation (4):

PRN ¼ TRCl
mass of Cl injected

�mass of N injected (4)

Physical retention is defined as water and nutrients that leave the
stream and enter subsurface or overbank flow paths that do not inter-
sect with the downstream sampling site during the timescale of the
experiment (Covino et al., 2010). The NO3-N physically retained by
hydrologic loss may subsequently encounter a variety of fates includ-
ing long-term storage in the valley aquifer, storage in floodplain water-
bodies (i.e., side channels, ponds, or marshes), denitrification in
floodplain waterbodies or shallow subsurface zones, uptake by riparian
vegetation or soil microbes, or eventual reentry into the channel. As
such, physical retention can delay downstream transport and provide
increased opportunity for biological uptake (Battin et al., 2008). We
then calculated biological NO3-N retention (BRN) using equation (5)

BRN ¼ TRN � PRN (5)

Biological retention of NO3-N (BRN) represents in-channel/hyporheic biological uptake of injected N.
Additionally, when the nutrient of concern is nonlimiting (i.e., saturating ambient conditions), nutrient injec-
tion experiments will fail to detect uptake. We standardized total, biologic, and physical retention by injected
tracer mass (i.e., percent retained; %) and by segment valley length (%/100 m). Our measures of biological
and physical retention represent the uptake (biological retention) and hydrologic (physical retention) pro-
cesses that attenuate downstream nutrient flux.

3.4. Stream Gross Gains and Losses of Water and NO3-N

We calculated gross gains and losses of water and NO3-N along the narrow and wide valley segments during
the high and low flow nutrient injection experiments using mass balance, as shown in equation (6):

QNet ¼ QGain � QLoss orð Þ NNet ¼ NGain � NLoss (6)

Net changes were determined as the differences in water (Q) or NO3-N (N) flux between the outflows and
inflows of each segment. Gross loss was determined from mass recovery during the injection experiments.
Hydrologic gross loss is determined from Cl mass recovery (see Covino et al., 2011), and nutrient mass loss
is determined fromNO3-Nmass recovery. The gain term of themass balance is then determined by difference.

4. Results
4.1. Stream Physical and Chemical Characteristics

Discharge was predominantly driven by seasonal snowmelt, with only slight increases in response to summer
storm events (Figure 2a). Discharge rose abruptly following snowmelt in late May tomaximums of 5,830 L/s at

Figure 4. (a) Physical (hashed, PR) and biological (black, BR) contributions to
total nitrate-nitrogen (NO3-N) retention during nutrient injection experiments.
Data are shown for high and low flow injections along the narrow and wide
segments and are given per 100 m of valley length to account for differences in
total valley length between the segments. The numbers along the bars in
Figure 4a refer to biological contributions to total retention. (b) The ratio of
biological to total retention given as a percentage. The numbers along the bars
give specific percentages of biological:total retention ratios.
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S1, 6,690 L/s at S2, and 5,190 L/s at S3 between 4 June and 22 June, and
decreased to minimums of 340 L/s at S1, 410 L/s at S2, and 940 L/s at S3
by the end of monitoring. From May to October, average discharge
increased with downstream distance, with values of 2,018 L/s at S1,
2,125 L/s at S2, and 2,318 L/s at S3. Water temperatures also increased
slightly with downstream distance, with an average (± standard devia-
tion) of 7.4 ± 3.4 °C at S1, 7.7 ± 3.4 °C at S2, and 8.4 ± 3.6 °C at S3 from
May to October. During the May–October period stream temperatures
ranged from 2.1–13.5 °C at S1, 2.0–13.7 °C at S2, and 2.3–14.4 °C at S3.

Nitrate-N concentrations were similar between all three sites, with an
average (± standard deviation) of 70 ± 35 μg/L at S1, 80 ± 41 μg/L at
S2, and 72 ± 42 μg/L at S3 (Figure 2b). Nitrate-N concentrations were
related to discharge and peaked on the rising limb of the seasonal
snowmelt hydrograph to maximums of 130 μg/L at S1, 150 μg/L at
S2, and 140 μg/L at S3 and decreased with the falling limb of the hydro-
graph to minimums of 20 μg/L at S1, 30 μg/L at S2, and 10 μg/L at S3 by
the end of monitoring (Figure 2b).

4.2. Segment Flux Balances and NO3-N Retention

Nitrate-N fluxes followed the snowmelt hydrograph with peak values of
49.3 kg/day at S1, 63.9 kg/day at S2, and 55.0 kg/day at S3 during June
high flows, and minimum values of 1.3 kg/day at S1, 1.6 kg/day at S2,
and 1.1 kg/day at S3 by late summer baseflow (Figure 3a). Nitrate-N
fluxes were generally higher at S2 (narrow segment outflow) than S1
(narrow segment inflow), such that the narrow segment was a net
source of NO3-N across flows (Figure 3b). In contrast, the relative mag-
nitudes of N fluxes at S3 (wide-segment outflow) and S2 (wide-seg-
ment inflow) indicated variable sink-source behavior along the wide
segment across flows (Figure 3b).

During all nutrient injection experiments, there was limited biological
uptake response to nutrient addition, which indicates the potential
for stream N saturation. Total retention of injected NO3-N per unit
valley length was higher in the narrow segment relative to the wide
segment during high and low flow experiments (Figure 4a). Total reten-
tion was dominated by physical retention during all experiments, and

we measured no biological nutrient uptake during the high flow experiment in the narrow segment
(Figure 4a). The biological contribution to total retention ranged from 0 to 28% and was largest during the
low flow experiments (Figure 4b).

Analysis of ambient flux balances across the stream-valley segments provided contrasting results relative to
tracer injection data. While nutrient injection experiments indicated greater total retention of added NO3-N
along the narrow segment relative to the wide segment, these gross losses were offset by gross gains

Figure 5. (a) Gross gains and losses of water and nitrate-nitrogen (NO3-N) along
narrow and wide segments during high and low flow experiments. Gross
losses are indicated by hashing, and water is open bars while NO3-N is gray bars.
Data are presented in percent gain/loss per 100 m of valley length to account
for differences in segment lengths. (b) Net change in water and NO3-N
along the narrow and wide valley segments during high and low flow
experiments. Again water is open bars and NO3-N is gray. Positive values
indicate the segment was a net source, while negative values indicate the
segment was a net sink. Gross losses were determined from NO3-N mass
recovery during injection experiments, net changes were determined from
ambient mass flux balances (i.e., outflow � inflow flux), and gross gains were
calculated as the difference between the two.

Table 2
Flows, Ambient NO3-N Concentrations, and Gross Gains and Losses of Water and NO3-N During Tracer Injection Experiments

Segment Date

Stream
temperature

(°C)

Ambient
NO3-N
(μg/L)

NO3�N
gain

(%/100 m)

NO3�N
loss

(%/100 m)

NO3�N
net

(%/100 m)

Segment
inflow Q
(L/s)

Segment
outflow Q

(L/s)
Q net
(L/s)

Q gain
(%/100 m)

Q loss
(%/100 m)

Q net
(%/100 m)

Narrow 9 June (HF) 5.2 134 (85) 17.4 �9.8 7.6 4750 5280 530 12.7 �9.8 2.9
Wide 8 June (HF) 5.4 124 (89) 1.7 �3.5 �1.8 5970 4650 �1320 1.6 �3.1 �1.4
Narrow 6 August (LF) 12.5 38 (73) 20.8 �8.2 12.6 850 950 100 9.0 �6.0 3.0
Wide 5 August (LF) 12.5 34 (87) 5.3 �0.5 4.8 950 1650 700 5.2 �0.4 4.8

Note. Parentheses in date column refer to high flow (HF) and low flow (LF) experiments. Parentheses in ambient NO3-N column indicate the proportion of
dissolved inorganic N from NO3-N.
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(Figure 5a). The larger magnitude of gross gains relative to gross losses of N along the narrow segment
resulted in net source behavior during high and low flow experiments (Figure 5b and Table 2). Gross
NO3-N and water gains were lower across the wide segment than across the narrow segment (Figure 5a).
During high flows along the wide segment, gross losses exceeded gross gains resulting in net sink behavior
(Figure 5b and Table 2). Both the narrow and wide segments were net sources for water and NO3-N during
low flow experiments (Figure 5 and Table 2).

5. Discussion

The capacity of streams to retain NO3-N during nutrient injection experiments varies considerably, with
higher biologic uptake typically observed in NO3-N limited relative to NO3-N-enriched sites (Marti et al.,
2004). In NSV, in-stream biologic uptake of added NO3-N was a relatively small proportion (<28%) of total
retention, which suggests the stream is approaching or experiencing N saturation (O’Brien et al., 2007).
Low biologic retention is expected in streams in which the ambient (i.e., preinjection) supply exceeds the bio-
logic demand for that nutrient (Newbold et al., 1981). In RMNP and other portions of the Colorado Rockies,
increased stream NO3-N concentrations have been observed (Lewis & Grant, 1980; Williams et al., 1996)
and this pattern has been linked to regional atmospheric deposition patterns (Clow et al., 2015; Mast et al.,
2014). Other work on dissolved inorganic N (DIN) uptake in RMNP streams, including NSV, has documented
low NO3-N use efficiency and biological preference for NH4-N (Day & Hall, 2017). Additionally, Day and Hall
(2017) observed that up to 19% of injected NH4-N was immediately nitrified. As such NH4-N is likely support-
ingmuch of the in-stream DIN demand in NSV and other RMNP streams. Consequently, we would expect that
NH4-N injections would reveal stronger biological, and greater total, retention of added N relative to the NO3-
N retention documented here. The stronger affinity for NH4-N was reflected in N concentrations at NSV,
where NO3-N accounted for 73–89% of total DIN (Table 2). Because NO3-N accounts for the majority of
DIN, future patterns of NOx deposition will likely be reflected in watershed NO3-N export patterns. This sug-
gests that regulation of emissions is likely to be effective in protecting high-elevation ecosystems of RMNP
and improving water quality of watershed exports (Mast et al., 2014).

Information obtained from nutrient injection experiments is challenging to interpret in isolation and needs to
be evaluated with complementary information. In fact, the contrasting information we obtained from injec-
tion experiments and segment mass balances would have led to different conclusions when interpreted in
isolation of one another. For example, although total retention of injected tracer was greater along the nar-
row segment, these losses were offset by gross gains. This resulted in net source behavior for NO3-N along
the narrow segment, even though it had a higher per unit total retention rate. While total NO3-N retention
per unit length was lower along the wide segment, gross gains were minimal resulting in net sink behavior
along the wide segment during high flow. Because the wide segment can store (net sink) water and N at high
flows it has the potential to provide ecosystem and water quality benefits at times when N fluxes are highest
(Ocampo et al., 2006) and in-stream uptake efficiencies are low due to high concentrations (Dodds et al.,
2002; Earl et al., 2006), high streamflow velocities (Bukaveckas, 2007), and cold temperatures (Demars
et al., 2011). A growing body of literature suggests that wide valley segments can act as key locations of
water, sediment, and nutrient storage in mountain watersheds (Bellmore & Baxter, 2014; Hauer et al., 2016;
Wohl et al., 2017). However, the ability of wide valley segments to store water and nutrients during peak
flows, providing important water and ecosystem services, needs to be evaluated in more settings and should
ultimately be more fully integrated into understanding water and nutrient export in mountain systems.

The pattern of gross gains and losses, and resulting net behavior, along the two segments is potentially
related to stream-valley interactions and riparian buffering of hillslope input (Jencso et al., 2010). This is
because interactions between the stream and the adjacent landscape are regulated by valley morphology
(Hynes, 1975) with implications for hydrologic (Ward et al., 2012, 2017) and nutrient processes (Gregory
et al., 1991; Hauer et al., 2016). The results we present here, although limited to one location, suggest that
stream-valley interactions can exert important controls on segment nutrient flux balance. The gross loss of
NO3-N through hydrologic exchange or biological uptake can be offset by gross gains, which, in turn, depend
upon factors such as stream-hillslope connectivity (Jencso et al., 2009) and width of the riparian area (Vidon &
Hill, 2004). The riparian buffer ratio, or the ratio of local riparian area divided by the lateral contributing area,
can be used to describe the capacity of the riparian zone to modulate lateral inputs from the hillslope
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(McGlynn & Seibert, 2003). In our study, the narrow segment is strongly connected to the adjacent hillslopes
and has limited riparian area. This results in a low riparian buffer ratio relative to the wide segment, which is
largely disconnected from adjacent hillslopes. In fact, the riparian buffering ratio was 4.7 times higher in the
wide relative to the narrow valley segment (Table 1). These differences in valley morphology, stream-hillslope
connectivity, stream slope, and sinuosity resulted in differences in gains and losses along the narrow and
wide segments. Because biological uptake was a small proportion of total retention of injected N along both
reaches, gross gains and losses exerted primary constraints on total retention patterns. Hydrologic controls
on N retention are likely to be particularly pronounced in streams approaching or experiencing N saturation.
Under N saturation, N concentration and export patterns along the stream network may be related to valley
width, hillslope connectivity, and riparian buffering. A hypothesis that derives from this is that streams
nearing or experiencing N saturation will preserve terrestrial loading signatures (Brookshire et al., 2009), while
N-limited streams will transform terrestrial loading signatures (Bernhardt et al., 2005). Because our research is
limited to two stream-valley segments in one watershed, we suggest that future research is required to
determine how valley morphology influences N concentration and export patterns in N-limited and
N-enriched sites.

6. Conclusion

We evaluated NO3-N retention processes along two longitudinally adjacent but morphologically contrasting
segments of Upper NSV Creek, Colorado. We found that biological uptake was a minor component (from 0%
to 28%) of total retention of NO3-N added during nutrient injection experiments. The low biological uptake of
injected N may be related to high atmospheric deposition of N along the Front Range of Colorado (Baron
et al., 2000; Mast et al., 2014; Williams et al., 1996) that may satisfy biological demand. As stream ecosystems
become N saturated, hydrologic connectivity between the stream, hillslopes, and riparian areas may become
increasingly important in controlling export patterns. Along NSV, longitudinal variations in valley width, hill-
slope connectivity, and riparian buffer ratios impacted gross gains and losses of water and NO3-N and asso-
ciated segment flux balances. Although per unit valley length total retention rates were higher along the
narrow segment, this retention capacity was overwhelmed by input (i.e., gross gain) from adjacent hillslopes
resulting in net positive flux balances (source behavior). While the narrow segment was a net source of NO3-N
across flows, the wide valley segment was a sink during high flows and source during low flows. This sink
behavior during high flows suggests that stream-riparian interaction in wide valley segments can be impor-
tant to water and N storage in mountain settings. However, landscape controls on stream reach nutrient flux
balances that may be masked by biological uptake in N-limited systems, and these relative controls on nutri-
ent export require further investigation across various landscapes. Further, we suggest that the relative
importance of in-stream and valley controls on nutrient retention be evaluated using a combined nutrient
injection and ambient flux approach that can provide complementary, but sometimes contrasting, results.
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